Towards Microsecond-Scale VM Core Provisioning
Agility on Serverless Platforms

Yibo Yan

University of Southern California
Los Angeles, USA

ABSTRACT

Bursty, data-intensive serverless workloads, such as server-
less big data analytics and DNN inference, amplify the fun-
damental tension for cloud providers between meeting strict
tail-latency service-level objectives (SLOs) and maintain-
ing cost-effectiveness. A key reason is that today’s multi-
tenant platforms cannot reallocate physical cores between
hardware-isolated virtual machines (VMs) at the microsec-
ond speeds these applications require. This capability is crit-
ical for instantly responding to demand spikes by shifting
resources from low-priority to latency-sensitive tasks.

This position paper introduces HyPERFLUX, a hyper-
reactive virtualization stack comprising three co-designed
components: a virtual machine monitor (VMM), a light-
weight guest OS, and a Linux kernel module as its core
arbiter. HYPERFLUX achieves core reallocation and vertical
core scaling (up/down) among hardware-isolated VMs
within tens of microseconds. By coupling transparent,
fast vertical core scaling with microsecond-level core
reallocation, HYPERFLUX advances hardware-isolated (KVM)
serverless provisioning agility and resource elasticity to the
microsecond scale. We discuss the system design and aim
to stimulate discussion on next-generation, cloud-native
computing with extreme agility.

CCS CONCEPTS

« Computer systems organization — Cloud computing;
- Software and its engineering — Operating systems; «
Security and privacy — Virtualization and security.

KEYWORDS

serverless computing, vertical scaling, lightweight isolation,
KVM, core (re)allocation

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

APSys °25, October 12—13, 2025, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1572-3/25/10
https://doi.org/10.1145/3725783.3764396

Seo Jin Park

University of Southern California
Los Angeles, USA

ACM Reference Format:

Yibo Yan and Seo Jin Park. 2025. Towards Microsecond-Scale VM
Core Provisioning Agility on Serverless Platforms . In 16th ACM
SIGOPS Asia-Pacific Workshop on Systems (APSys "25), October 12—13,
2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3725783.3764396

1 INTRODUCTION

Serverless computing abstracts resource management away
from developers, allowing the platform operator to allocate
computation resources on demand and to reclaim them when
workload pressure subsides. This model promises both higher
utilization for the cloud provider and lower cost for the
tenant. In practice, however, cloud providers must main-
tain substantial head-room—by pre-warming a pool of mi-
croVMs or reserving idle cores—so that each request meets its
tail-latency Service-Level Objective (SLO). Such head-room
comes at a direct monetary cost, eroding the pay-as-you-go
value proposition [28, 56, 61, 70].

A new generation of burst-style, data-intensive serverless
workloads amplifies the tension. Serverless big data analytics
and serverless DNN inference [2, 9, 11, 12] all exhibit high
burstiness: the arrival rate can surge by orders of magnitude
in a few milliseconds. They also require varying parallelism
over requests: the ideal degree of parallelism changes
dramatically from one request to another. For instance,
consider aggregation operations on a serverless big data
analytics platform. A small aggregation can complete on a
few dozen cores, whereas a large join over tens of gigabytes
could require an order of magnitude more cores. Here, the
degree of parallelism is unknown until the query arrives at
the system; thus, we cannot allocate cores in advance.

The combination of bursty request arrivals, request-
specific parallelism, and real-time SLOs poses challenges for
today’s infrastructure in aligning resource allocation with
demands. Over-provisioning for the worst-case demand of
bursty, data-intensive workloads across all tenants in the
cloud is economically untenable, as it leads to substantial
resource waste. Yet, without over-provisioned resources to
handle peak demand, some requests may require a degree of
parallelism that exceeds the allocated computation capacity,
resulting in SLO violations.


https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3725783.3764396
https://doi.org/10.1145/3725783.3764396

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

Prior studies have demonstrated that microsecond
core reallocation mechanism can effectively maintain
microsecond-scale tail latency without wasting cores for
over-provisioning [27, 36, 49, 52]. However, none of them
targets multi-tenant cloud environments, which heavily
rely on VM-based isolation to provide inter-tenant security
guarantees. Therefore, multi-tenant cloud serverless
platforms demand a fast core reallocation mechanism that
matches these new burst-style, data-intensive serverless
workload’s time scale, assigning or revoking hundreds
of cores in a few tens of microseconds while preserving
hardware-based isolation among tenants, thereby providing
microsecond-scale VM core provisioning agility.

We present HYPERFLUX, a hyper-reactive virtualization
substrate. HYPERFLUX is co-designed with a virtual machine
monitor (VMM), a lightweight guest OS, and a Linux kernel
module to (1) vertically scale up and down VMs by scheduling
and de-scheduling their virtual CPUs (vCPUs) and (2) dy-
namically reallocate physical cores among VMs based on
the demand—both within tens of microseconds and without
requiring guest application modification and cooperation.

The remainder of this paper is organized as follows: §2
motivates microsecond-scale VM vertical elasticity and core
reallocation; §3 details the design of HyPERFLUX and the
rationale of our design choices; §4 discusses the potential of
HypeRrFLUX for the future cloud computing.

2 BACKGROUND AND MOTIVATION

Microsecond-scale VM core provisioning agility consists
of two complementary capabilities: vertical core elasticity,
which resizes a VM by adding or removing vCPUs, and core
reallocation, which shifts physical cores across VMs. This
section primarily focuses on motivating why both opera-
tions must be completed within tens of microseconds to
support emerging latency-sensitive, bursty, and data-driven
serverless workloads.

2.1 Vertical Core Elasticity

Burst-style, data-driven serverless workloads inherently
exhibit both inter-request and intra-request parallelism
dynamism. At the inter-request level, different requests
may process vastly different volumes of data, leading to
highly variable parallelism requirements to satisfy SLOs. At
the intra-request level, parallelism needs fluctuate across
stages within the same query—for example, aggregation,
shuffle, and reduce often impose distinct and shifting
degrees of parallelism that are difficult to anticipate in
advance [17, 20, 30, 72]. This dual form of parallelism
dynamism makes static core allocation ineffective. To
consistently meet tail-latency SLOs under bursty arrivals,
application VMs must support rapid vertical core scaling,

Yibo Yan and Seo Jin Park

acquiring additional cores on demand as parallelism
requirements surge.

Equally important, a serverless platform must avoid re-
source waste by reclaiming unused cores when parallelism
demand subsides. Thus, the infrastructure should not only
scale VMs up under pressure but also scale them down once
additional computation resources are no longer required,
thereby achieving vertical core elasticity.

Achieving fast vertical core elasticity, however, presents
considerable challenges. Uncoordinated removal of vCPUs
from a guest VM can destabilize execution, causing schedul-
ing anomalies and inducing incorrect behaviors. Specifically,
if a vCPU is abruptly de-scheduled from the physical core
without proper coordination with the guest kernel, the guest
kernel may still treat it as active and continue scheduling
tasks onto it. On the other hand, while CPU hotplug [8] offers
a mechanism for coordinated vertical core scaling, its inher-
ent high latency (ranging from hundreds of milliseconds
to seconds) renders it unsuitable for burst-style serverless
applications that have microsecond-level tail-latency SLOs.

Takeaway 1

To host bursty, data-driven serverless applications in a cost-
effective manner, the serverless infrastructure must be able
to scale VMs up within tens of microseconds to accommo-
date unpredictable parallelism demands, and scale them
down promptly to reclaim resources once demand subsides.

2.2 Microsecond-Scale Core Reallocation

Beyond enabling vertical core elasticity within a VM, a server-
less platform must also provision sufficient cores instantly to
absorb sudden bursts of applications that demand microsec-
ond tail-latency SLOs. Any delay in provisioning cores can
inflate tail latency and potentially lead to SLO violations.

Given the importance of high resource utilization and
service density [28, 56, 61, 70], serverless platforms typically
colocate diverse workloads, mixing applications with
strict tail-latency SLOs and others with looser latency
requirements. To meet the strict SLOs of bursty, data-driven
workloads, the serverless platform can harvest cores from
latency-insensitive applications and reallocate them to
latency-sensitive tasks.

A body of prior work has explored fast core (re)allocation
on datacenter systems to protect latency-sensitive applica-
tions by promptly harvesting cores from latency-insensitive
one [27, 36, 49, 52]. This approach avoids over-provisioning,
reduces core waste, and improves resource utilization.
However, these studies assume that applications run in a
single trusted domain. Namely, applications running on
these systems are not isolated by a hypervisor.



Towards Microsecond-Scale VM Core Provisioning Agility on Serverless Platforms

In contrast, multi-tenant cloud environments require
hardware-enforced isolation, which introduces an additional
layer of complexity and poses new challenges for fast core
reallocation. To achieve microsecond-scale core reallocation
across VMs, the system must rapidly and safely preempt
cores from latency-insensitive application VMs and reassign
cores to latency-sensitive ones by directly manipulating
vCPU-to-core mappings.

Takeaway 2

Serverless platforms demand a microsecond-scale core
reallocation mechanism that can swiftly shift cores to
tail-latency-sensitive workloads, ensuring SLO compliance
without sacrificing resource utilization.

2.3 Lightweight Guest OS for Performance

Booting a full Linux kernel inside virtual machines incurs
prohibitive overhead on the critical path, making it unsuit-
able for fine-grained, low-latency serverless workloads [21,
37, 45, 64]. To mitigate this cost, recent systems [13, 26, 58,
67] adopt the concept of a LibOS (library OS [25, 50]), which
provides a subset of OS interfaces as a library that linked di-
rectly with user applications. A LibOS offers substantial per-
formance advantages as it is loaded in the guest application’s
address space to emulate most system calls and avoid most
context switches and VMExi ts, while relying on a thin host in-
terface for hardware resource multiplexing and management.

An alternative approach to reducing startup latency, ex-
emplified by Hyperlight [14], is to compile essential guest OS
functionalities directly into the application binary. This ap-
proach, conceptually similar to unikernels [39, 44], eliminates
the need for a separate guest OS instantiation, thereby push-
ing cold-start latency even lower. The trade-off, however, is
reduced compatibility: applications must be recompiled, and
existing binaries cannot run unmodified.

3 HYPERFLUX: MICROSECOND-SCALE
VM CORE PROVISIONING AGILITY

We introduce HYPERFLUX, a hyper-reactive, hardware-based
virtualization stack that enables microsecond-scale core pro-
visioning agility. Figure 1 illustrates the architecture of Hy-
PERFLUX and highlights its three primary components in pur-
ple: FLuxOS, Fruxion, and kFrux. FLuxOS is a lightweight
LibOS that serves as the guest OS. FLUxION acts as the vir-
tual machine monitor (VMM), responsible for instantiating
and managing VMs and coordinating their vCPUs, similar
in role to Firecracker [18]. Finally, KFLUX is a Linux kernel
module running on the host that manages core preemption
in response to changes in parallelism demand.

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

Physical CPU
[K] Kernel-space

[E] Hardware
VM VM VM

rfr"AArr-AaAr.N r-N r.0
CoJuoouLly w-J C.J

(1]

s
R

FiGURE 1: The HypeErFLUX architecture. Three primary com-
ponents in purple: FLuxOS serves as the guest OS for user
applications; FLUXION serves as the virtual machine monitor
(VMM), coordinating with KFLUX to perform fast core reallocation.

Scheduled - Parked
Legend vitual CPU VG Virtual cPU

Guests
[ Virtual Machine ]

Host

Unlike traditional VMM (e.g., Firecracker), FLUXxION ac-
tively coordinates with KFLUX to perform safe vCPU-to-core
assignment and achieve microsecond-scale core reallocation.

3.1 Threat Model

HyperFLUX assumes that all three components—FLuxOS,
FrLuxioN, and kFLux—are trusted. In contrast, user applica-
tions are not trusted. The entire guest VM is managed by
the serverless service provider via HypERFLUX. Memory
isolation is enforced by hardware via KVM, along with other
hypervisor-based security guarantees.

FLuxOS is a preemptive OS and it can forcibly preempt
threads of user applications. In particular, coordination be-
tween FLux1oN and FLUuxOS cannot be blocked by a misbe-
having or buggy application that indefinitely holds a lock.

3.2 Lightweight Isolation

HyperFLUX loads FLUxOS, a lightweight LibOS, to avoid the
cost of loading a full Linux kernel. FLuxOS directly handles
system calls from user applications, enabling HYPERFLUX to
host existing, unmodified software. FLuxOS provides a cus-
tom ELF loader that resolves the system call jump addresses
to FLuxOS implementations when loading a binary.

To favor a minimalist design and reduce latency incurred
during ELF loading and system call address resolving,
FLuxOS does not implement the complete set of Linux
system calls. A recent study [26] reports that implementing
126 Linux system calls can effectively support a variety of
applications written in C/C++ and Rust, as well as several
language runtimes, including Python, Go, Node.js, and Java.

Furthermore, inspired by Virtines [64], HyPERFLUX
reuses existing KVM structures (i.e., virtual contexts) to



APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

VM #1 VM #2 '

uThreads E E !
jare) ' [ uThread ][ uThread ] : [ uThread ] .
Assignedto| - - ! : ,
vCPUs [ i ] [ | ]
vCPUs are E EY_Q} E E
Pinned To || - - ¥ ' — — '
coes || AL S
e é:} é) (}3) D
G-t - -

FIGURE 2: HyperFLUX performs vertical core scaling by
(un)pinning vCPUs on cores, thereby adjusting the parallelism
capacity for uThreads inside the VM.

bypass the expensive VM initialization incurred during the
KVM_CREATE_VM ioctl. Prior work such as Dandelion [38]
shows that reusing KVM structures can potentially reduce
the VM startup latency to the sub-millisecond level.

3.3 Parallelism Management

Threading. As shown in Figure 2, FLuxOS provides a high-
performance, user-level threading library to the guest ap-
plication. Each vCPU has its own task queue and a sched-
uler that polls the queue to schedule tasks, a.k.a., user-level
threads (uThread). FLuxOS employs work stealing to bal-
ance lightweight uThreads across vCPUs—a strategy widely
recognized as effective for minimizing tail latency in prior
studies [27, 31, 51, 66].

Interface. For compatibility, FLuxOS provides the standard
pthread (POSIX Threads) interface to guest applications
by intercepting and re-routing pthread calls to FLuxOS’s
threading library during ELF loading. We also intend to ex-
plore new APIs that can help demanding applications to more
explicitly and efficiently express their parallelism demands.

vCPU Management. Each vCPU runs inside a dedicated
kernel thread (kThread) on the host. In Figure 2, FLux1on and
KFLUX activate a vCPU by pinning its corresponding kThread
to a physical core, thereby increasing the number of active
vCPUs available to a VM. Similarly, they de-schedule these
kThreads to revoke vCPUs from VMs, thereby decreasing
the VM’s compute capacity.

Internal Concurrency. To fully benefit from vertical core
scaling, we note that user applications must expose internal
concurrency, i.e., spawning new threads for parallel, indepen-
dent tasks. For example, single-threaded, event-loop-based
applications such as Redis [16] cannot benefit from vertical
core scaling without modifications. Specifically, one uThread
can only be scheduled and executed on one vCPU at a time;
therefore, adding additional cores does not effectively in-
crease the compute capacity. Nevertheless, we argue that
with the evolution of cloud-native programming, the cloud
software landscape is expected to evolve and adapt to new
infrastructure paradigms accordingly [19, 23, 34, 60, 68].

Yibo Yan and Seo Jin Park

3.4 Vertical Core Scaling

HyperFLUX instantiates VMs ahead of time, each with a
specified maximum number of vCPUs it can utilize. These
VMs are then kept in a dormant state, where no vCPUs are
assigned to physical cores and, consequently, no computa-
tion resources are consumed. To scale up and accommodate
bursty tasks, HYPERFLUX dynamically activates dormant VMs
by assigning their vCPUs to physical cores. This mechanism
provides additional computation capacity and parallelism to
user applications through vertical scaling.

Ditto [71] experimented with application-assisted vCPU
vertical scaling, reporting a 14 ys latency for vCPU addi-
tion and removal, indicating the feasibility of microsecond-
level scaling. Building on this insight, HyPERFLUX advances
further by providing application-transparent vertical core
scaling through the coordination of FLuxOS and FLuxION.

Downscaling with Safe Parking. HYPERFLUX vertically
scale down VMs by de-scheduling their vCPUs from physical
cores. However, blindly de-scheduling vCPUs can disrupt ex-
ecution. For example, if a task running on a vCPU is holding
a lock and that vCPU is abruptly de-scheduled, other tasks
needing to acquire the lock cannot progress properly.

To avoid such hazards, HyPERFLUX coordinates FLUXION
and FLuxOS to safely park vCPUs before de-scheduling.
Specifically, FLuxion first notifies FLuxOS of the to-be-
parked vCPU. FLuxOS preempts the currently running
task (if any) on that vCPU and saves its execution context.
Subsequently, FLuxOS suspends the vCPU so that no new
tasks can be scheduled onto it. Finally, FLuxOS signals
Fruxion that the vCPU is safe to de-schedule, and FLuxion
coordinates with kFLux to de-schedule the vCPU from the
physical core. FLuxion puts the de-scheduled vCPU into the
dormant state and yields the core to other VMs.

While a regular Linux guest kernel also support vCPU
hotplug via a similar sequence, the operation typically com-
pletes at second-scale latencies [8, 46]. In contrast, the tight
integration of lightweight FLuxOS with FLuxion reduces
this latency to tens of microseconds.

Progressiveness after Parking. The parked vCPU may
have a queue of pending tasks; FLuxOS ensures progres-
siveness by allowing active vCPUs to steal tasks from
parked ones. However, solely relying on work stealing can
cause load imbalance and increased tail latencies for tasks
originally queued on the parked vCPU. We plan to explore
proactive task migration to evaluate whether the additional
complexity is justified by potential performance benefits.

If tasks on parked vCPUs hold locks, active vCPUs will
eventually steal and execute them, thereby preserving pro-
gressiveness. Nevertheless, parking vCPUs under such con-
ditions can temporarily increase latency, as execution must
wait until an active vCPU picks up the task and other tasks



Towards Microsecond-Scale VM Core Provisioning Agility on Serverless Platforms

that need to acquire the lock are delayed. In practice, HYPER-
Frux downscales a VM primarily when higher-priority VMs
require additional resources or when the downscaled VM no
longer needs as much computation capacity. In such cases,
the modest latency increase is an acceptable trade-off.

Voluntary Yield. When a vCPU exhausts its local task queue
and cannot find stealable work from other vCPUs, FLuxOS
voluntarily yields the core back to FLuxion. Yielded cores
can be reassigned to other VMs, avoiding resource waste and
preventing core stranding.

Upscaling. FLuxIioN schedules the corresponding vCPUs
onto physical cores and signals them to resume normal sched-
uling via FLuxOS. If the newly scheduled vCPUs have no
queued tasks, their schedulers engage in work stealing to
acquire tasks from other vCPUs.

3.5 Core Reallocation

Inspired by Caladan [27], HyPERFLUX dedicates a phys-
ical core to busy-polling for monitoring and enabling
microsecond-scale core reallocation using FLuxionN and
kFrux. Unlike Caladan, however, HYPERFLUX supports core
reallocation across VM boundaries, a capability essential
in multi-tenant environments.

Monitoring and Reaction. HyPERFLUX supports both
proactive and reactive core reallocation. In proactive reallo-
cation, when a burst-style request with strict SLOs arrives,
the platform can instruct FLuxION to (re)allocate sufficient
cores to the corresponding VM before the request generates
a large number of parallel tasks. Proactive reallocation alone,
however, is not sufficient: computation jobs often consist of
multiple stages, and the concurrency level in intermediate
stages is difficult to predict in advance [17, 20, 30, 72].
Therefore, HyPERFLUX also performs reactive realloca-
tion by monitoring runtime metrics and adjusting cores
accordingly. For example, KFLUX can track the average
task (uThread) and network packet queuing delay of a
VM via FLuxOS. If the average queuing delay exceeds a
predefined threshold, FLuxion reallocates additional cores
to the VM, provided it has higher priority. Prior systems
such as Shenango [49] and Caladan [27] have examined
the challenging problem of identifying effective metrics
and reacting within tens of microseconds in datacenter
environments. HYPERFLUX builds on these insights to enable
inter-VM core reallocation in multi-tenant settings.

Core Preemption and Assignment. To reallocate physical
cores among VMs, HYPERFLUX performs core preemption
and assignment in a tight loop. For preemption, HYPERFLUX
triggers the safe parking mechanism on target vCPUs so that
these vCPUs can be de-scheduled safely. Once reclaimed,
these cores are reassigned to VMs requiring additional com-
putation capacity. Both Shenango and Caladan [27, 49] have

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

demonstrated that such operations, while seemingly com-
plex, can be completed within tens of microseconds.

3.6 Low-Overhead Host-Guest
Communication

HypreRFLUX is designed around the core principle of tight,
efficient coordination between the guest OS (FLuxOS) and
the VMM (FLuxion). To achieve microsecond-level efficient
coordination, HYPERFLUX relies heavily on hypercalls and a
shared-memory control plane.

Hypercalls in FLuxOS serve two key purposes: 1) eliminat-
ing unnecessary VMExits during Linux system call handling,
and 2) enabling low-overhead voluntary core yielding and
safe parking. In addition, FLux1oN establishes a shared mem-
ory region with each guest VM running FLuxOS. Fast core
reallocation requires aggressive polling of VM runtime states.
Each VM must promptly populate aggregated runtime met-
rics into the shared memory so that KFLUX can make accurate
reallocation decisions at microsecond timescales.

However, efficiently coordinating and managing these
metrics between guest and host at scale remains an open
question for exploration. Furthermore, scaling the shared-
memory control plane to thousands of VMs demands careful
design to ensure both efficiency and robustness.

3.7 Language Runtime and Dependency
Initialization Latency

Prior studies [24, 35, 41, 42, 53] revealed that loading
language runtimes (e.g., JVM or Python) and dependencies
(e.g., third-party libraries) incurs non-negligible overhead in
the critical path of cold start. To mitigate this, HyPERFLUX fol-
lows the conventional approach of pre-warming and pooling,
maintaining a pool of VMs with pre-initialized language run-
times and dependencies. However, aggressive pre-warming
and pooling can induce substantial memory overhead, which
is uneconomical for serverless platforms. Fortunately, HYPER-
FLux’s vertical scaling capabilities can alleviate the need for
such aggressive pre-warming and pooling (detailed in §4.3).

4 DISCUSSIONS
4.1 Tiered Cold-Start Mitigation Strategy

Mitigating cold-start delays has been a crucial research focus
in serverless computing. Prior work has largely emphasized
minimizing sandbox start-up time [18, 48, 59] or avoiding
cold starts on the critical path [21, 24, 41, 65]. We contend
that neither approach alone is sufficient, particularly for
emerging bursty, data-driven serverless workloads.
HyperFLUX strikes this balance through a tiered cold-start
mitigation strategy, illustrated in Figure 3, with latency pro-
jections based on prior work. Tiers are ordered from top



APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

Tier1
(<50us)

alread

Vertical Scale Yes: instantiated?

‘

No
Tier 2

i already
(<500us) Pooling ves

No
Tier 3

(<1ms)

Tier 4 Shapshot
o
Tier 5
(<100ms)

no expensive
initialization?

VM Cold Start Yes

have snapshot?

Full Cold Start |« No

|

F1GURE 3: HYPERFLUXs tiered strategy for mitigating cold-start
latencies during upscaling. Higher tiers offer lower scaling latency.

to bottom by increasing latency, and HyPERFLUX degrades
gracefully to a lower tier only when the requirements of
a higher tier cannot be met. The VM Cold Start tier (tier
3) applies when a job requires a VM but does not involve
heavyweight language runtime or dependency initialization;
thanks to HYPERFLUX ’s lightweight VM design, latency in
this tier remains below 1 ms. If a job demands costly runtime
initialization and no applicable snapshot is available, the
platform falls back to a Full Cold Start—a path prohibitively
slow for microsecond-scale tasks.

The overarching goal of HYPERFLUX is to keep provi-
sioning paths within the top three tiers whenever possible,
thereby ensuring sub-millisecond provisioning latency.

4.2 TEE-Ready Substrate

HyperFLUX aligns well with the cloud’s shift toward Trusted
Execution Environments (TEEs). Hardware-backed confiden-
tial VMs (CVMs), e.g., AMD SEV-SNP [1, 4, 10] and AWS Ni-
tro [3], have become the dominant TEE primitive in the cloud
because they graft attested memory-encryption onto the ma-
ture VM management stack, shielding tenant code even from
a compromised host OS. Since HYPERFLUX is implemented na-
tively atop KVM, it can readily benefit from CVM protections.

In contrast, existing container-based resource orchestra-
tors and provisioners are poorly suited for latency-sensitive
serverless computing with TEEs. Most confidential container
(CC) solutions nest the container runtime inside a CVM [5-
7], introducing an additional control plane and extra VMExit
overheads. HYPERFLUX avoids this indirection and additional
layers of overhead, preserving the microsecond-scale latency
budget that these workloads require.

CVMs do retain a known weakness—cold-start latencies
on the order of hundreds of milliseconds to seconds—
primarily due to the cost of attesting memory contents [32],
rather than vCPU topology. Fortunately, Ditto [71] shows
that securely adding or removing vCPUs in a CVM can be
completed in only ~14 ys. HYPERFLUX inherits this capability
out-of-the-box: a pool of dormant, pre-attested CVMs can be

Yibo Yan and Seo Jin Park

kept resident, while FLux10N’s microsecond vertical-scaling
path lends or reclaims encrypted vCPUs on demand. This
design masks cold-start costs, delivering TEE guarantees
without sacrificing provision agility.

4.3 Memory Overhead with Vertical Scaling

HypERFLUX’s vertical scaling incurs significantly less mem-
ory overhead than conventional pre-warming and pooling
techniques [29, 37, 57]. Traditional pre-warming mechanisms
typically pre-provision multiple microVMs for a user applica-
tion or function so they can be harvested on demand without
incurring a cold start. However, pre-warmed microVMs share
a large portion of identical memory content, e.g., the guest
OS, language runtime, and loaded libraries. The memory
duplication leads to high memory waste at scale [40]. In
contrast, each HyPERFLUX VM primarily scales vertically to
absorb increased load, with all computations running inside
the same instance and sharing the same memory content.
This design alleviates the inefficiencies of memory duplica-
tion and reduces reliance on sophisticated techniques such
as memory deduplication [54] and sandbox sharing [41].

5 RELATED WORK

Scaling Strategies. Vertical [33, 63] and horizontal [22, 43]
core scaling have been explored at coarser time scales (at
or beyond the millisecond scale) with container-based pro-
visioning, whereas HYPERFLUX focuses on VM-based core
provisioning at the microsecond scale. Nikolos et al. [47] dis-
cussed hybrid scaling for VM-based core provisioning, but
their vertical scaling relies on statically over-provisioning
VMs beforehand to accommodate more computation capac-
ity demands. HYPERFLUX, in contrast, provides true vertical
elasticity that can reclaim and redistribute physical cores
among VMs, thereby preventing the excessive reservation
of unused CPU resources.

Memory Elasticity. Conventional VM memory elasticity is
typically achieved via memory ballooning or hotplug tech-
niques [15, 55, 62]. However, these mechanisms are generally
too slow to be viable for serverless platforms, given their
stringent latency budgets. A recent study [69] proposes a fast
memory reclamation mechanism tailored for serverless plat-
forms. HYPERFLUX primarily addresses CPU elasticity rather
than memory elasticity. Nevertheless, memory elasticity is
an orthogonal concern, and we anticipate that achieving VM-
based memory elasticity at the microsecond scale represents
another important challenge for future serverless computing.

ACKNOWLEDGMENTS

We thank our anonymous reviewers and members of the NSL
group at USC for their valuable discussions and feedback.
This work was partially supported by Amazon.



Towards Microsecond-Scale VM Core Provisioning Agility on Serverless Platforms

REFERENCES

(1]

(2]
(3]
(4]

[5
[6

[}

—
[
~

—

[19

-

[20

=

[21]

AMD Secure Encrypted Virtualization (SEV). https://www.amd.com/
en/developer/sev.html

AWS EMR Serverless. https://aws.amazon.com/emr/serverless.

AWS Nitro System. https://aws.amazon.com/ec2/nitro/

Azure Confidential VM. https://learn.microsoft.com/en-us/azure/
confidential-computing/virtual-machine-options
Confidential Containers. https://confidentialcontainers.org/
Confidential Containers on Azure Container Instances.  https:
//learn.microsoft.com/en-us/azure/container-instances/container-
instances-confidential-overview

Confidential Containers with Azure Red Hat OpenShift.
https://learn.microsoft.com/en-us/azure/openshift/confidential-
containers-overview

CPU Hotplug in the Kernel — The Linux Kernel Documentation. https:
//docs.kernel.org/core-api/cpu_hotplug.html

Databricks: Run your Databricks job with serverless compute for work-
flows. https://docs.databricks.com/en/workflows/jobs/run-serverless-
jobs.html.

GCP: Confidential VM Overview. https://cloud.google.com/
confidential-computing/confidential-vm/docs/confidential-vm-
overview

GCP: Serverless GPUs on Google Cloud Run. https://cloud.google.
com/run/docs/configuring/services/gpu. Accessed: January 2025.
Google Dataproc Serverless Spark. https://cloud.google.com/dataproc-
serverless/docs.

gVisor. https://gvisor.dev/

HyperLight: A Lightweight Hypervisor. Microsoft. https://github.
com/hyperlight-dev/hyperlight

Memory Hot(Un)Plug — The Linux Kernel Documentation. https:
//docs.kernel.org/admin-guide/mm/memory-hotplug.html

Redis. https://redis.io/

Databricks: Adaptive Query Execution. https://www.databricks.com/
blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-
at-runtime.html

Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight Virtualization for Serverless Applications. In
17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20). 419-434. https://www.usenix.org/conference/nsdi20/
presentation/agache

Gustavo Alonso, Ana Klimovic, Tom Kuchler, and Michael Wawrzo-
niak. Rethinking Serverless Computing: From the Programming Model
to the Platform Design. In Proceedings of the Joint Proceedings of Work-
shops at the 49th International Conference on Very Large Data Bases
VLDB 2023 (CEUR Workshop Proceedings, Vol. 3462). CEUR-WS.org, 10
p- doi:10.3929/ETHZ-B-000652749

Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. Apollo: Scalable and Co-
ordinated Scheduling for Cloud-Scale Computing. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14). 285-300. https://www.usenix.org/conference/osdil4/technical-
sessions/presentation/boutin

James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. SEUSS: Skip Redundant Paths to Make Server-
less Fast. In Proceedings of the Fifteenth European Conference on Com-
puter Systems (EuroSys "20). Association for Computing Machinery,
New York, NY, USA, 1-15. doi:10.1145/3342195.3392698

Liao Chen, Shutian Luo, Chenyu Lin, Zizhao Mo, Huanle Xu, Kejiang
Ye, and Chengzhong Xu. Derm: SLA-aware Resource Management
for Highly Dynamic Microservices. In 2024 ACM/IEEE 51st Annual

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

International Symposium on Computer Architecture (ISCA). 424-436.
doi:10.1109/ISCA59077.2024.00039

Alvin Cheung, Natacha Crooks, Joseph M. Hellerstein, and Mae Milano.
New Directions in Cloud Programming. In Proceedings of the 11th
Conference on Innovative Data Systems Research. www.cidrdb.org. http:
//cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond Startup
for Serverless Computing with Initialization-less Booting. In Proceed-
ings of the Twenty-Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS °20).
Association for Computing Machinery, New York, NY, USA, 467-481.
doi:10.1145/3373376.3378512

D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An Operating
System Architecture for Application-Level Resource Management.
ACM SIGOPS Operating Systems Review 29, 5 (Dec. 1995), 251-266.
doi:10.1145/224057.224076

Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez, Esha Choukse,
Inigo Goiri, Sameh Elnikety, Rodrigo Fonseca, and Adam Belay. Mak-
ing Kernel Bypass Practical for the Cloud with Junction. In Proceedings
of the 21st USENIX Symposium on Networked Systems Design and Im-
plementation. USENIX Association, 55-73. https://www.usenix.org/
conference/nsdi24/presentation/fried

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
Caladan: Mitigating Interference at Microsecond Timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 20). 281-297. https://www.usenix.org/conference/osdi20/
presentation/fried

Alexander Fuerst, Stanko Novakovié, Ifigo Goiri, Gohar Irfan
Chaudhry, Prateek Sharma, Kapil Arya, Kevin Broas, Eugene Bak,
Mehmet Iyigun, and Ricardo Bianchini. Memory-Harvesting VMs in
Cloud Platforms. In Proceedings of the 27th ACM International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’22). Association for Computing Machinery, New
York, NY, USA, 583-594. doi:10.1145/3503222.3507725

Alexander Fuerst and Prateek Sharma. FaasCache: Keeping Server-
less Computing Alive with Greedy-Dual Caching. In Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS °21). As-
sociation for Computing Machinery, New York, NY, USA, 386-400.
doi:10.1145/3445814.3446757

Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh
Ananthanarayanan. Altruistic Scheduling in Multi-Resource Clusters.
In 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16). 65-80. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/grandl_altruistic

Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo
Bianchini, and Kathryn S. McKinley. Few-to-Many: Incremental Par-
allelism for Reducing Tail Latency in Interactive Services. In Proceed-
ings of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’15). As-
sociation for Computing Machinery, New York, NY, USA, 161-175.
doi:10.1145/2694344.2694384

Benjamin Holmes, Jason Waterman, and Dan Williams. SEVeriFast:
Minimizing the Root of Trust for Fast Startup of SEV microVMs. In
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2
(ASPLOS °24, Vol. 2). Association for Computing Machinery, New York,
NY, USA, 1045-1060. doi:10.1145/3620665.3640424

Xiaofeng Hou, Chao Li, Jiacheng Liu, Lu Zhang, Shaolei Ren, Jingwen
Leng, Quan Chen, and Minyi Guo. AlphaR: Learning-Powered Re-
source Management for Irregular, Dynamic Microservice Graph. In


https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://aws.amazon.com/emr/serverless
https://aws.amazon.com/ec2/nitro/
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-options
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-options
https://confidentialcontainers.org/
https://learn.microsoft.com/en-us/azure/container-instances/container-instances-confidential-overview
https://learn.microsoft.com/en-us/azure/container-instances/container-instances-confidential-overview
https://learn.microsoft.com/en-us/azure/container-instances/container-instances-confidential-overview
https://learn.microsoft.com/en-us/azure/openshift/confidential-containers-overview
https://learn.microsoft.com/en-us/azure/openshift/confidential-containers-overview
https://docs.kernel.org/core-api/cpu_hotplug.html
https://docs.kernel.org/core-api/cpu_hotplug.html
https://docs.databricks.com/en/workflows/jobs/run-serverless-jobs.html
https://docs.databricks.com/en/workflows/jobs/run-serverless-jobs.html
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/run/docs/configuring/services/gpu
https://cloud.google.com/run/docs/configuring/services/gpu
https://cloud.google.com/dataproc-serverless/docs
https://cloud.google.com/dataproc-serverless/docs
https://gvisor.dev/
https://github.com/hyperlight-dev/hyperlight
https://github.com/hyperlight-dev/hyperlight
https://docs.kernel.org/admin-guide/mm/memory-hotplug.html
https://docs.kernel.org/admin-guide/mm/memory-hotplug.html
https://redis.io/
https://www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.3929/ETHZ-B-000652749
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1109/ISCA59077.2024.00039
http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/224057.224076
https://www.usenix.org/conference/nsdi24/presentation/fried
https://www.usenix.org/conference/nsdi24/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/fried
https://doi.org/10.1145/3503222.3507725
https://doi.org/10.1145/3445814.3446757
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl_altruistic
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl_altruistic
https://doi.org/10.1145/2694344.2694384
https://doi.org/10.1145/3620665.3640424

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

[34

[35

(36

(37

(38

(39

(40

(41

(42

(43

(44

=

[

=

—

[t

]

[t

—

—

[t

=

2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 797-806. doi:10.1109/IPDPS49936.2021.00089

Serhii Ivanenko, Carlos Segarra, and Rodrigo Bruno. Mosaic: Opti-
mizing Cloud Resource Efficiency with Lazily-Packaged Application
Modules. In Proceedings of the 3rd Workshop on SErverless Systems,
Applications and MEthodologies. ACM, Rotterdam Netherlands, 21-29.
doi:10.1145/3721465.3721864

Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke
Darlow, Jianfeng Wang, Qiwen Deng, and Adam Barker. Serverless
Cold Starts and Where to Find Them. In Proceedings of the Twentieth
European Conference on Computer Systems (EuroSys °25). Association
for Computing Machinery, New York, NY, USA, 938-953. doi:10.1145/
3689031.3696073

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Maziéres, and Christos Kozyrakis. Shinjuku: Preemptive Sched-
uling for psecond-Scale Tail Latency. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). 345-360.
https://www.usenix.org/conference/nsdi19/presentation/kaffes
Ricardo Koller and Dan Williams. Will Serverless End the Dominance
of Linux in the Cloud?. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems (HotOS ’17). Association for Computing
Machinery, New York, NY, USA, 169-173. doi:10.1145/3102980.3103008
Tom Kuchler, Pinghe Li, Yazhuo Zhang, Lazar Cvetkovi¢, Boris Gora-
nov, Tobias Stocker, Leon Thomm, Simone Kalbermatter, Tim Not-
ter, Andrea Lattuada, and Ana Klimovic. Unlocking True Elasticity
for the Cloud-Native Era with Dandelion. arXiv:2505.01603 [cs.DC]
https://arxiv.org/abs/2505.01603

Simon Kuenzer, Vlad-Andrei Badoiu, Hugo Lefeuvre, Sharan San-
thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Stefan Teodorescu, Costi Raducanu, Cristian Banu, Laurent Mathy,
Rézvan Deaconescu, Costin Raiciu, and Felipe Huici. Unikraft:
Fast, Specialized Unikernels the Easy Way. In Proceedings of the Six-
teenth European Conference on Computer Systems (EuroSys "21). As-
sociation for Computing Machinery, New York, NY, USA, 376-394.
doi:10.1145/3447786.3456248

Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi
Tao, Bin Zha, Qiang Wang, Weidong Han, and Minyi Guo. {RunD}:
A Lightweight Secure Container Runtime for High-density Deploy-
ment and High-concurrency Startup in Serverless Computing. In
2022 USENIX Annual Technical Conference (USENIX ATC 22). 53-68.
https://www.usenix.org/conference/atc22/presentation/li- zijun-rund
Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze
Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. Help
Rather Than Recycle: Alleviating Cold Startup in Serverless Computing
Through Inter-Function Container Sharing. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22). 69-84. https://www.usenix.
org/conference/atc22/presentation/li-zijun-help

Xuanzhe Liu, Jinfeng Wen, Zhenpeng Chen, Ding Li, Junkai Chen,
Yi Liu, Haoyu Wang, and Xin Jin. FaaSLight : General Application-
level Cold-start Latency Optimization for Function-as-a-Service in
Serverless Computing. ACM Transactions on Software Engineering and
Methodology 32, 5 (Sept. 2023), 1-29. doi:10.1145/3585007

Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Jian
He, Guodong Yang, and Chengzhong Xu. Erms: Efficient Resource
Management for Shared Microservices with SLA Guarantees. In Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1
(ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 62-77. doi:10.1145/3567955.3567964

Anil Madhavapeddy and David J. Scott. Unikernels: Rise of the Virtual
Library Operating System. Queue 11, 11 (Nov. 2013), 30-44. doi:10.
1145/2557963.2566628

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Yibo Yan and Seo Jin Park

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici.
My VM Is Lighter (and Safer) than Your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles (SOSP ’17). As-
sociation for Computing Machinery, New York, NY, USA, 218-233.
doi:10.1145/3132747.3132763

Tianxiang Miao and Haibo Chen. FlexCore: Dynamic Virtual Machine
Scheduling Using VCPU Ballooning. Tsinghua Science and Technology
20, 1 (Feb. 2015), 7-16. doi:10.1109/TST.2015.7040515

Orestis Lagkas Nikolos, Chloe Alverti, Stratos Psomadakis, Georgios
Goumas, and Nectarios Koziris. Scaling Serverless Functions: Horizon-
tal or Vertical? Both!. In Proceedings of the 3rd Workshop on SErverless
Systems, Applications and MEthodologies. ACM, Rotterdam Netherlands,
30-32. doi:10.1145/3721465.3721865

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Har-
ter, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
2018 USENIX Annual Technical Conference (USENLX ATC 18). 57-70.
https://www.usenix.org/conference/atc18/presentation/oakes

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving High CPU Efficiency for
Latency-sensitive Datacenter Workloads. In 16th USENLX Symposium
on Networked Systems Design and Implementation (NSDI 19). 361-378.
https://www.usenix.org/conference/nsdil9/presentation/ousterhout
Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,
and Galen C. Hunt. Rethinking the Library OS from the Top Down.
ACM SIGPLAN Notices 46, 3 (March 2011), 291-304. doi:10.1145/
1961296.1950399

George Prekas, Marios Kogias, and Edouard Bugnion. ZygOS: Achiev-
ing Low Tail Latency for Microsecond-scale Networked Tasks. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles (SOSP
’17). Association for Computing Machinery, New York, NY, USA, 325-
341. doi:10.1145/3132747.3132780

Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. Arachne: Core-Aware Thread Management. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18).
145-160. https://www.usenix.org/conference/osdi18/presentation/qin
Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol, Haoran Zhang,
Abhigna Nagaraja, Neeraj Pathak, Girish Joshi, Carla Souza, Bo Huang,
Wyatt Cook, Andrii Golovei, Pradeep Venkat, Andrew Mcfague, Dim-
itrios Skarlatos, Vipul Patel, Ravinder Thind, Ernesto Gonzalez, Yun
Jin, and Chungiang Tang. XFaaS: Hyperscale and Low Cost Serverless
Functions at Meta. In Proceedings of the 29th Symposium on Operating
Systems Principles (SOSP °23). Association for Computing Machinery,
New York, NY, USA, 231-246. doi:10.1145/3600006.3613155
Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. Memory Deduplication for Serverless Computing with Medes.
In Proceedings of the Seventeenth European Conference on Computer
Systems (EuroSys °22). Association for Computing Machinery, New
York, NY, USA, 714-729. doi:10.1145/3492321.3524272

Joel Schopp and Keir Fraser. Resizing Memory With Balloons and Hot-
plug. In Proceedings of the Linux Symposium, Vol. 2. Ottawa, Ontario,
Canada, 313. https://kernel.org/doc/mirror/ols2006v2.pdf#page=313
Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. Omega: Flexible, Scalable Schedulers for Large Compute
Clusters. In Proceedings of the 8th ACM European Conference on Com-
puter Systems (EuroSys ’13). Association for Computing Machinery,
New York, NY, USA, 351-364. doi:10.1145/2465351.2465386
Mohammad Shahrad, Rodrigo Fonseca, iﬁigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the Wild: Charac-
terizing and Optimizing the Serverless Workload at a Large Cloud


https://doi.org/10.1109/IPDPS49936.2021.00089
https://doi.org/10.1145/3721465.3721864
https://doi.org/10.1145/3689031.3696073
https://doi.org/10.1145/3689031.3696073
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://doi.org/10.1145/3102980.3103008
https://arxiv.org/abs/2505.01603
https://arxiv.org/abs/2505.01603
https://doi.org/10.1145/3447786.3456248
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund
https://www.usenix.org/conference/atc22/presentation/li-zijun-help
https://www.usenix.org/conference/atc22/presentation/li-zijun-help
https://doi.org/10.1145/3585007
https://doi.org/10.1145/3567955.3567964
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1109/TST.2015.7040515
https://doi.org/10.1145/3721465.3721865
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://doi.org/10.1145/1961296.1950399
https://doi.org/10.1145/1961296.1950399
https://doi.org/10.1145/3132747.3132780
https://www.usenix.org/conference/osdi18/presentation/qin
https://doi.org/10.1145/3600006.3613155
https://doi.org/10.1145/3492321.3524272
https://kernel.org/doc/mirror/ols2006v2.pdf#page=313
https://doi.org/10.1145/2465351.2465386

=

—

[t

Towards Microsecond-Scale VM Core Provisioning Agility on Serverless Platforms

Provider. In 2020 USENIX Annual Technical Conference (USENLX ATC
20). 205-218. https://www.usenix.org/conference/atc20/presentation/
shahrad

Jiacheng Shi, Jinyu Gu, Yubin Xia, and Haibo Chen. Server-
less Functions Made Confidential and Efficient with Split Con-
tainers. In 34th USENIX Security Symposium (USENIX Security 25).
1091-1110.  https://www.usenix.org/conference/usenixsecurity25/
presentation/shi-jiacheng

Simon Shillaker and Peter Pietzuch. Faasm: Lightweight Isolation
for Efficient Stateful Serverless Computing. In 2020 USENLX Annual
Technical Conference (USENLX ATC 20). 419-433. https://www.usenix.
org/conference/atc20/presentation/shillaker

Ariel Szekely, Adam Belay, Robert Morris, and M. Frans Kaashoek.
Unifying Serverless and Microservice Workloads with SigmaOS. In

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

[70] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,

and John Wilkes. CPI?: CPU Performance Isolation for Shared
Compute Clusters. In Proceedings of the 8th ACM European Confer-
ence on Computer Systems. ACM, Prague Czech Republic, 379-391.
doi:10.1145/2465351.2465388

Shixuan Zhao, Mengyuan Li, Mengjia Yan, and Zhiqgiang Lin. Ditto:
Elastic Confidential VMs with Secure and Dynamic CPU Scaling. doi:10.
48550/arXiv.2409.15542

Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou.
AQUATOPE: QoS-and-Uncertainty-Aware Resource Management for
Multi-stage Serverless Workflows. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 1 (ASPLOS 2023). Association
for Computing Machinery, New York, NY, USA, 1-14. doi:10.1145/

Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems 3567955.3567960
Principles (SOSP "24). Association for Computing Machinery, New York,
NY, USA, 385-402. doi:10.1145/3694715.3695947

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. Large-Scale Cluster Management
at Google with Borg. In Proceedings of the Tenth European Confer-
ence on Computer Systems (EuroSys ’15). Association for Computing
Machinery, New York, NY, USA, 1-17. doi:10.1145/2741948.2741964
Carl A. Waldspurger. Memory Resource Management in VMware ESX
Server. SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2003), 181-194. doi:10.1145/
844128.844146

Zibo Wang, Pinghe Li, Chieh-Jan Mike Liang, Feng Wu, and Francis Y.
Yan. Autothrottle: A Practical Bi-Level Approach to Resource Man-
agement for SLO-Targeted Microservices. In 21st USENIX Symposium
on Networked Systems Design and Implementation (NSDI 24). 149-165.
https://www.usenix.org/conference/nsdi24/presentation/wang-zibo
Nicholas C. Wanninger, Joshua J. Bowden, Kirtankumar Shetty, Ayush
Garg, and Kyle C. Hale. Isolating Functions at the Hardware Limit
with Virtines. In Proceedings of the Seventeenth European Conference
on Computer Systems (EuroSys °22). ACM, Rennes France, 644-662.
doi:10.1145/3492321.3519553

Xingda Wei, Fangming Lu, Tianxia Wang, Jinyu Gu, Yuhan Yang, Rong
Chen, and Haibo Chen. No Provisioned Concurrency: Fast RDMA-
codesigned Remote Fork for Serverless Computing. In 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 23).
497-517. https://www.usenix.org/conference/osdi23/presentation/
wei-rdma

Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. Elfen
Scheduling: Fine-Grain Principled Borrowing from Latency-Critical
Workloads Using Simultaneous Multithreading. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16). 309-322. https://www.usenix.
org/conference/atc16/technical-sessions/presentation/yang

[67] Jianing You, Kang Chen, Laiping Zhao, Yiming Li, Yichi Chen, Yuxuan
Du, Yanjie Wang, Luhang Wen, Keyang Hu, and Kegiu Li. AlloyStack:
A Library Operating System for Serverless Workflow Applications. In
Proceedings of the Twentieth European Conference on Computer Systems
(EuroSys °25). Association for Computing Machinery, New York, NY,
USA, 921-937. do0i:10.1145/3689031.3717490

Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. Fol-
lowing the Data, Not the Function: Rethinking Function Orchestra-
tion in Serverless Computing. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23). 1489-1504.
https://www.usenix.org/conference/nsdi23/presentation/yu

Xinmin Zhang, Qiang He, Hao Fan, and Song Wu. Faascale: Scaling
MicroVM Vertically for Serverless Computing with Memory Elasticity.
In Proceedings of the ACM Symposium on Cloud Computing (SoCC "24).
ACM, Redmond WA USA, 196-212. doi:10.1145/3698038.3698512

[61

—

(62

—

(63

=

(64

=

(65

—

(66

—

(68

=

(69

—


https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/usenixsecurity25/presentation/shi-jiacheng
https://www.usenix.org/conference/usenixsecurity25/presentation/shi-jiacheng
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.1145/3694715.3695947
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/844128.844146
https://www.usenix.org/conference/nsdi24/presentation/wang-zibo
https://doi.org/10.1145/3492321.3519553
https://www.usenix.org/conference/osdi23/presentation/wei-rdma
https://www.usenix.org/conference/osdi23/presentation/wei-rdma
https://www.usenix.org/conference/atc16/technical-sessions/presentation/yang
https://www.usenix.org/conference/atc16/technical-sessions/presentation/yang
https://doi.org/10.1145/3689031.3717490
https://www.usenix.org/conference/nsdi23/presentation/yu
https://doi.org/10.1145/3698038.3698512
https://doi.org/10.1145/2465351.2465388
https://doi.org/10.48550/arXiv.2409.15542
https://doi.org/10.48550/arXiv.2409.15542
https://doi.org/10.1145/3567955.3567960
https://doi.org/10.1145/3567955.3567960

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Vertical Core Elasticity
	2.2 Microsecond-Scale Core Reallocation
	2.3 Lightweight Guest OS for Performance

	3 HyperFlux: Microsecond-Scale VM Core Provisioning Agility
	3.1 Threat Model
	3.2 Lightweight Isolation
	3.3 Parallelism Management
	3.4 Vertical Core Scaling
	3.5 Core Reallocation
	3.6 Low-Overhead Host-Guest Communication
	3.7 Language Runtime and Dependency Initialization Latency

	4 Discussions
	4.1 Tiered Cold-Start Mitigation Strategy
	4.2 TEE-Ready Substrate
	4.3 Memory Overhead with Vertical Scaling

	5 Related Work
	Acknowledgments
	References

